

Plano de Ensino

Disciplina Isolada: Mecânica Geral - 80 horas BACHARELADO EM ENGENHARIA MECÂNICA

Mecânica Geral / Período: 3

Professor: Fernando Geraldo Simão (Especialista)

CH: 80h

Ementa:

Centroide, centro de massa e momentos de inércia. Sistemas de forças e forças distribuídas. Equilíbrio. Cinemática do corpo rígido: translação, rotação e centro instantâneo de rotação. Dinâmica do corpo rígido: translação e rotação.

Habilidades:

Compreender as noções dos sistemas de força.

Capacitar o aluno em noções de equilíbrio.

Entender a dinâmica de corpos e movimentos.

Analisar campos tridimensionais.

Metodologia:

As aulas a distância serão realizadas em vídeo aulas, material disponível no Ambiente Virtual de Aprendizagem (AVA), atividades de apoio para exploração e enriquecimento do conteúdo trabalhado, fóruns de discussão, atividades de sistematização, avaliações e laboratórios práticos virtuais.

Recursos Didáticos:

Livro didático;

Vídeo aula;

Fóruns:

Estudos Dirigidos (Estudo de caso);

Experimentos em laboratório virtual;

Biblioteca virtual;

Atividades em campo.

Conteúdo Programático:

MOMENTOS DE INÉRCIA

Centroide de uma área.

Momento de Inércia de área.

Massa e Momento de inércia de massa.

EQUILÍBRIO DE PARTÍCULAS E PRINCIPAIS FORÇAS

Principais forças atuantes.

Diagrama de corpo Livre.

Equilíbrio translacional de uma partícula.

EQUILÍBIO DOS CORPOS RÍGIDOS

Análise do equilíbrio de estruturas.

Forças atuantes sobre os nós de uma estrutura.

Equilíbrio translacional e rotacional de um corpo rígido)

CINEMÁTICA DOS CORPOS RÍGIDOS

O movimento rotacional.

Principais variáveis cinemáticas.

Rotação, translação e movimento plano geral.

DINÂMICA DOS CORPOS RÍGIDOS

Momento angular

Conservação do momento angular

Energia de rotação

ANÁLISE TRIDIMENSIONAL

Representação vetorial

Força e Momento em três Dimensões

Movimento e graus de liberdade

Sistema de Avaliação:

A distribuição dos 100 pontos acontecerá da seguinte forma durante o período de oferta da disciplina:

Fórum de Discussão Avaliativo: 10%

Estudo Diriaido:10% Avaliação Parcial I : 15% Avaliação Parcial II: 15% Avaliação Final: 50%

Caso o aluno não alcance no mínimo 60% da pontuação distribuída, haverá a Avaliação Suplementar com as seguintes características:

Todo o conteúdo da disciplina. Valor: 100 pontos

Pré-requisito: Resultado Final >= 20 e <60

Regra: (Resultado Final + Nota Prova Suplementar) / 2

Média final para Aprovação: >= 60 pontos

Bibliografia Principal:

BEER, F. P.; JOHNSTON JR., E. R.; CORNWELL, P. J. Mecânica vetorial para engenheiros: dinâmica. 9. ed. Porto Alegre: AMGH, 2012. ERDMAN, A. G.; SANDOR, G. N. Advanced mechanism design: analysis and synthesis. Englewood Cliffs: Prentice-Hall, 1984. v. 4. HIBBELER, R. C. Estática: mecânica para engenharia. 12. ed. São Paulo: Pearson Prentice Hall, 2011.

Bibliografia Complementar:

KASSIMALI, Aslam. Análise estrutural. São Paulo: Cengage Learning, 2016.

MYSZKA, D. H. Machines & mechanisms: applied kinematic analysis. 4th ed. Upper Saddle River: Pearson Education, 2011.

MCCORMAC, Jack C. Análise estrutural usando métodos clássicos e métodos matriciais. 4. ed. Rio de Janeiro: LTC, 2009.

NORTON, R. L. Cinemática e dinâmica dos mecanismos. Porto Alegre: AMGH, 2010.

Thyciane Alvieira Gonsalves Freitas Secretária Acadêmica